AUTOMATION

Omega Modules OBB

Identification system for short product names

Short product name		Example:	0	B	B		085					
System	$=$ Omega module											
Guideway	= Ball Rail System											
Drive	$=$ Toothed Belt Drive											
Size	$=055 / 085 / 120$											
Version	$=$ Standard model											
Generation	$=$ Product generation											

Short product name

Using the short product name, Rexroth linear axes can be identified according to their product family, size, version and product generation.

Changes/amendments at a glance

Catalog structure

- New catalog number
- New product designation
- Revised dimensional drawings
- "Delivery form" additional chapter
- "Calculation" expanded chapter
- "EasyHandling" additional chapter
- Additional chapters "Switches", "Extensions" and "Distributors"
- "Power cable chains" chapter deleted

Technical modifications

- Increase of the dynamic load capacities and moments
- Revised table structure of the tech. data tables and drive data
- Integration of new motor types (MSM)
- Technical details of clamping element (LKPS)
- Chapters "Operating conditions" and "Lubrication" revised
- "Parameterization" chapter amended
- Order example
- Query sheet

Omega modules OBB

Product overview			4
	Product description		4
	Load ratings and sizes		6
	Structural design		7
	Delivery form		9
Technical data	General technical data	Drive data	10
	Deflection		12
		Deflection charts	13
Calculations	Calculation principles	Mounting orientation HORIZONTAL	20
		Mounting orientation VERTICAL	23
	Calculation example	Mounting orientation HORIZONTAL	26
		Mounting orientation VERTICAL	28
Configuration and ordering	OBB-055	Configuration and ordering	30
		Dimensions	32
	OBB-085	Configuration and ordering	34
		Dimensions	36
	OBB-120	Configuration and ordering	38
		Dimensions	40
Attachments and accessories	Switch mounting - frame moves (carriage fixed)		42
	Switch mounting - carriage moves (frame fixed)		44
	Cable duct		46
	Socket and plug		47
	Switches		52
	Extension pieces		56
	Distributors		60
	Extensions for passive distributors		62
	Combination examples		64
	Mounting		66
	Carriage with clamping element	Carriage	70
		Clamping element (LKPS)	70
	Attachment of additional devices	End plate for attachment	71
	Shock absorber		72
	IndraDyn S servo motors MSK		74
	IndraDyn S servo motors MSM		76
EasyHandling			78
Service and information	Operating conditions	Normal operating conditions	82
		Design notes	82
		Required and supplementary documentation	82
	Lubrication		83
	Documentation		83
	Parameterization		84
	Further information		85
	Ordering example OBB-085	Configuration and ordering	86
	Inquiry/order form		88

Product description

Omega modules (OBB) with ball rail systems and toothed belt drive for travel speeds up to $5.0 \mathrm{~m} / \mathrm{s}$.
Omega modules are ready-to-install linear axes for any desired mounting orientation in freely configurable lengths up to 5500 mm .

Due to the design, Omega modules are particularly well suited for applications where the frame enters the working area.

Characteristic features:

- Extremely compact precision aluminum profile with integrated Rexroth ball rail system for optimal travel
- Carriage with one-point lubrication
- With locating holes in the carriage and on the end plates
- Driven with toothed belts for high dynamics and high travel speed
- Mountable switches
- Available complete with motor, controller and control unit
- With planetary gearbox (PG) or angular planetary gearbox (WPG) with different gear ratios
- Pneumatic clamping elements (optional)
- Extensive range of accessories available

Sectors:

- Handling and assembly
- Electronics and semiconductor industry
- Automotive suppliers and OEMs
- Robotics and automation
- Special-purpose machines
- Packaging technology
- Building services
- Plastics processing
- Textile industry

Application areas:

- Pick and place
- Handling systems
- Component assembly systems, palletizers
- Feed units for machine tools
- Testing and analysis systems
- Feed units in transfer lines
- Load shifters

For mounting, maintenance and start-up, see the Instructions.

Mounting option

Fastening thread and locating holes

Versatile mounting options are provided by the fastening threads and locating holes on the two end plates of the frame.

Easy mounting thanks to locating holes in the carriage

Frame HK moves

Carriage TT moves

OBB as a horizontal axis
Installation case: Carriage moves
(frame mounted)

On request:
OBB as horizontal axis with two carriages Installation case: Carriages move independently of each other (frame fixed).
Representation (example): a carriage with planetary gearbox, a carriage with angular gear.

Product overview

Load ratings and sizes

Note on dynamic load ratings and torques:

Determination of the dynamic load ratings and torques is based on a total travel of $100,000 \mathrm{~m}$. Often only $50,000 \mathrm{~m}$ of total travel are actually stipulated. For comparison: Multiply values $\mathrm{C}, \mathrm{M}_{\mathrm{t}}$ and M_{L} by a factor of 1.26 .

C = dynamic load rating
$L_{\text {max }}=$ maximum length of the linear motion system

Suitable loads

(Recommended values based on experience)

As far as the desired service life is concerned, loads of up to approximately 20% of the dynamic characteristic values ($\mathbf{C}, \mathbf{M}_{\mathrm{t}}, \mathbf{M}_{\mathrm{L}}$) have proved acceptable.

Here the following must not be exceeded:

- The maximum permissible drive torque
- The maximum permissible load
- The maximum permissible travel speed
- The maximum permissible acceleration

Structural design

Design (without switches)
1 Frame
2 Carriage
3 End plate
4 Belt clamp
5 Toothed belt
6 Lube port (at both end faces)
7 Air port
(for carriage with clamping element)
8 Clamping hub for motor attachment
9 Angular planetary gearbox (WPG)
10 Motor
11 Planetary gearbox (PG)
12 Mounting flange

Structural design

Attachments

Frame moves

(carriage fixed)
1 Frame
2 Carriage
3 Mechanical switches (with attachments)
4 Proximity switch (with attachments)
5 Control strip on the frame
6 Socket and plug
7 Switch mounting profile

Carriage moves

(frame fixed)
1 Frame
2 Carriage
3 Mechanical switch (with attachments)
4 Proximity switch (with attachments)
5 Switching angle (on the carriage)
6 Socket and plug

Accessories

8 Shock absorber
Shock absorbers are available as accessories and can be ordered separately with the relevant material number (see page 72).

Delivery form

Version

Motor attachment

Accessories

Lubrication

Documentation

Omega modules are delivered completely ready-mounted. In addition to the Omega module itself, the assembly also includes the motor attachment and motor options if they were included in the order.

If a combination of motor and motor attachment has been selected, then the attachment of the components is done as shown in the figure which also shows the location of the motor connector. The motor attachment version is selected or defined during the product configuration and is part of the order code.

Optional accessories like the cable duct, switch, switching angles and socket with plugs are included as loose parts in the delivery.

Omega modules are delivered with initial greasing. Information about lubricants can be found in the section "Lubrication".

The manual, safety information and a declaration of incorporation required for assembly and maintenance are included with each Omega module.

Technical data

General technical data

Observe the "Calculation" page 20 section!

Drive data

OBB-055	without	1	12.0	165.00	5.00	1.10	TT	3249.16	0.0000	689.59	52.52	25AT5	460	1750	50
							HK	718.37	2.9825						
	PG	3	4.0	55.00	4.12	0.52	TT	458.80	0.0000	76.62					
							HK	93.32	0.3314						
		5	2.4	33.00	2.47	0.32	TT	168.11	0.0000	27.58					
							HK	36.53	0.1193						
		8	1.5	20.63	1.55	0.24	TT	69.12	0.0000	10.77					
							HK	17.72	0.0466						
	WPG	3	4.0	55.00	4.12	0.67	TT	531.20	0.0000	76.62					
							HK	104.42	0.3314						
		5	2.4	33.00	2.47	0.47	TT	201.28	0.0000	27.58					
							HK	47.63	0.1193						
		8	1.5	20.63	1.55	0.34	TT	88.84	0.0000	10.77					
							HK	28.82	0.0466						
OBB-085	without	1	40.0	255.00	5.00	3.00	TT	20052.44	0.0000	1647.14	81.17	50AT5	992	3500	50
							HK	2724.50	18.0527						
	PG	5	8.0	51.00	3.40	1.00	TT	1077.70	0.0000	65.89					
							HK	153.98	0.7221						
		8	5.0	31.88	2.13	0.63	TT	442.40	0.0000	25.74					
							HK	81.57	0.2821						
	WPG	5	8.0	51.00	2.85	1.30	TT	1271.13	0.0000	65.89					
							HK	195.88	0.7221						
		8	5.0	31.88	2.13	0.93	TT	543.49	0.0000	25.74					
							HK	123.47	0.2821						
OBB-120	without	1	154.0	340.00	5.00	6.00	TT	62121.14	0.0000	2928.43	108.23	70AT10	2844	11750	50
							HK	13655.57	50.1933						
	PG	9	17.1	37.78	2.20	1.57	TT	1310.92	0.0000	36.15					
							HK	430.59	0.6197						
	WPG	9	17.1	37.78	1.86	2.02		1838.85	0.0000	36.15					
							HK	741.59	0.6197						

1) Maximum power that can be transmitted through the engaging teeth that are in the belt pulley.
2) The permissible tensile load of the belt cross section (belt elasticity limit) is specified for better comparability. This value represents the load limit with respect to the plastic deformation and may not be used to determine the maximum permitted drive torque.
3) The specified values apply for the relevant combination shown (OBB without gear or OBB with gear) and are shown reduced based on the motor shaft. For information on the use of the values, see section "Calculation".

4) Minimum required travel distance to ensure a reliable lubrication distribution, see "Operating conditions".

For short-stroke applications with travel distances $<\mathrm{s}_{\text {min }}$, please ask.
2) The dimension $L_{a d}$ is required for the length calculation (see section "Configuration and ordering" for the relevant sizes)

```
PG
WPG = angular planetary gearbox
TT = carriage
HK = frame
```


Mass of the Omega module
 Weight calculation does not include motor or switch.

$m_{s}=k_{g \text { fix }}+k_{g \text { var }} \cdot L+m_{\text {ca }}$
$\mathrm{k}_{\mathrm{g} \text { fix }}=$ constant for fixed-length portion of the mass
$\mathrm{k}_{\mathrm{g} v a r}=$ constant for the variable-length portion of the mass (kg/mm)
$\mathrm{L}=$ length of frame (mm)
$\mathrm{m}_{\mathrm{s}}=$ mass of the linear motion system (kg)
$\mathrm{m}_{\mathrm{ca}}=$ mass of the carriage (kg)

Note

Values for the gear are not listed in the "Technical data" tables, as the gear is part of the linear motion system and is already taken into account in the technical values.

$\mathrm{a}_{\text {max }}$	$=$ maximum permissible acceleration
C	$=$ dynamic load rating
d_{3}	$=$ diameter of belt pulley
F_{bp}	maximum belt drive transmission force
$F_{\text {t perm }}$	$=$ permissible cable pull strength
$F_{y \text { max }}, F_{z \text { max }}$	- maximum permissible load in y - or z -direction
$\mathrm{I}_{\mathrm{y}}, \mathrm{I}_{\mathrm{z}}$	$=$ planar moment of inertia
i	$=$ gear ratio
$\mathrm{k}_{\mathrm{Jfix}}$	$\begin{aligned} = & \text { constant for fixed-length portion of mass } \\ & \text { moment of inertia } \end{aligned}$
$\mathrm{k}_{\mathrm{J} \text { var }}$	$\begin{aligned} & =\text { constant for length-variable portion of mass } \\ & \text { moment of inertia } \end{aligned}$
k_{Jm}	$\begin{aligned} = & \text { constant for mass-specific portion of mass } \\ & \text { moment of inertia } \end{aligned}$
L_{ca}	$=$ carriage length
$\mathrm{L}_{\text {ad }}$	$=$ additional length
$\mathrm{L}_{\text {max }}$	$=$ maximum length of the linear motion system
$\mathrm{M}_{\mathrm{t}}, \mathrm{M}_{\mathrm{L}}$	$=$ dynamic load moment
$M_{x \text { max }}, M_{y \text { max }}, M_{z \text { max }}$	$\begin{aligned} & =\text { maximum permitted torsional moment around } \\ & \text { the } x^{-}, y^{-}, z \text {-axis } \end{aligned}$
M_{L}	$=$ dynamic longitudinal moment load capacity
M_{t}	$=$ dynamic torsional moment load capacity
M_{p}	$=$ maximum permissible drive torque
$\mathrm{M}_{\text {Rs }}$	$\begin{aligned} = & \text { frictional torque of system } \\ & \text { (on the drive journal) } \end{aligned}$
m_{ca}	$=$ moved mass of carriage
$\mathrm{s}_{\text {min }}$	$=$ minimum required travel distance
u	$=$ lead constant
$\mathrm{v}_{\text {max }}$	$=$ maximum permissible travel speed

Technical data

Deflection

A special feature of Omega modules is the possibility to mount them by the carriage, which remains stationary while the frame moves.
If a force acts on the overhanging frame in the area of the end plate (F) (direction of force transverse to the travel direction \mathbf{X}), the frame undergoes a deflection (f) dependent on the length $\left(\mathrm{L}_{1}\right)$ (distance from the center of the carriage to the end of the frame).
When the OBB is used as a vertical axis in a portal, a deflection of the frame occurs due to the acceleration forces of the horizontal axes.
This deflection is reversible, i.e. deflection occurs for as long as the acceleration forces are acting.

Example

Omega module OBB-055:
$\mathrm{L}_{1}=800 \mathrm{~mm}$
$\mathrm{F}=100 \mathrm{~N}$, force acting in z-direction
$\mathrm{f}=1.2 \mathrm{~mm}$

Deflection charts for loads from the z and y directions
OBB-055
The following charts apply for a carriage fixed to the mounting base over the entire area
(see section "Mounting by the carriage" on page 66).
For larger lengths or loads, please ask.

Technical data

Deflection

Deflection charts for loads from the z and y directions

OBB-085

The following charts apply for a carriage fixed to the mounting base over the entire area
(see section "Mounting by the carriage" on page 66).
For larger lengths or loads, please ask.

Calculations

Calculation principles

The correct dimensioning and assessment of an application requires structured consideration of the drive train as a whole. The basic element of the drive train is the configuration - comprising the linear motion system, the transmission element (gear) and the motor - which can be ordered in that constellation in the catalog.

Maximum permissible load

Service life

Service life of the linear guide

Combined equivalent load on bearing of the linear guide:

When selecting linear motion systems, it is essential to consider the upper limits for permissible loads and forces, as specified in the section ""General technical data" on page 10. The values stated there are system-related. In other words, the upper. limits are determined not only by the load ratings of the bearing points but also include structural design and material-related considerations.

Conditions for combined loads:

$$
\frac{\left|F_{y}\right|}{F_{y} \max }+\frac{\left|F_{z}\right|}{F_{z} \text { max }}+\frac{\left|M_{x}\right|}{M_{x} \text { max }}+\frac{\left|M_{y}\right|}{M_{y} \text { max }}+\frac{\left|M_{z}\right|}{M_{z} \text { max }} \leq 1
$$

The service life of the rolling bearing points contained in a linear motion system can be calculated using the formulas given below.
The rolling bearing point that is relevant to the service life in a linear motion system with toothed belt drive is generally the linear guide.
The calculated service life specification for the linear motion system is determined by the service life value of the linear guide.

The linear guide of a linear motion system must bear the load, the side torques of the motor attachment / motor and any processing forces.

$$
F_{c o m b}=F_{y}+F_{z}+C \cdot \frac{\left|M_{x}\right|}{M_{t}}+C \cdot \frac{\left|M_{y}\right|}{M_{L}}+C \cdot \frac{\left|M_{z}\right|}{M_{L}}
$$

Nominal life

Nominal life in meters:

Nominal life in hours:

$\mathrm{C}=$ dynamic load rating	(N)
$\begin{aligned} \mathrm{F}_{\text {comb }}= & \text { combined equivalent load } \\ & \text { on bearing } \end{aligned}$	(N)
$\mathrm{F}_{\mathrm{y}} \quad=$ force in y -direction	(N)
$\mathrm{F}_{\mathrm{z}} \quad=$ force in z -direction	(N)
$\mathrm{L}=$ nominal life in meters	(m)
$L_{h}=$ nominal life in hours	(h)
$\mathrm{M}_{\mathrm{L}}=$ dynamic longitudinal moment load capacity	(Nm)
$\mathrm{M}_{\mathrm{t}}=$ dynamic torsional moment load capacity	(Nm)
$M_{x}=$ torsional moment about the x-axis	(Nm)
$\mathrm{M}_{\mathrm{y}}=\text { torsional moment about }$ $\text { the } y \text {-axis }$	(Nm)
$M_{z}=$ torsional moment about the z-axis	(Nm)
$\mathrm{v}_{\mathrm{m}}=$ average travel speed	(m/s)

$\mathrm{F}_{\text {comb }}=$ combined equivalent load on bearing
$\mathrm{F}_{\mathrm{y}}=$ force in y -direction \quad (N)
$\mathrm{F}_{\mathrm{z}} \quad=$ force in z -direction
$\mathrm{L}=$ nominal life in meters (m)
$\mathrm{L}_{\mathrm{h}} \quad=$ nominal life in hours
$M_{\perp}=$ dynamic longitudinal
$\mathrm{M}_{\mathrm{t}}=$ dynamic torsional moment load capacity (Nm)
$\mathrm{M}_{\mathrm{z}}=$ torsional moment about the z-axis
(m / s)

$$
\mathrm{L}=\left(\frac{\mathrm{C}}{\mathrm{~F}_{\text {comb }}}\right)^{3} \cdot 10^{5}
$$

$$
\begin{equation*}
L_{h}=\frac{L}{3600 \cdot v_{m}} \tag{Nm}
\end{equation*}
$$

Calculations

General

Drive design - Basic principles

Technical data and formula symbols for the mechanical system

When calculating the required size of drive, the drive train can be subdivided into the mechanical system and the drive itself.
The mechanical system includes the linear motion system component (including transmission element gear), as well as taking into account the load.
The electric drive is a motor-controller combination with the appropriate performance data. The sizing or dimensioning of the electric drive is done taking the motor shaft as a reference point.
When sizing the drive, limit values must be taken into account as well as basic values. The limit values are to be observed in order to avoid damaging the mechanical components.

The technical values for the linear motion system already include the relevant gear data and take into account the gear ratio. In other words, the corresponding maximum permissible limits for torque and speed, as well as the underlying friction torque and mass moment of inertia with respect to the motor shaft are reduced and can be taken directly from the tables (see section "Drive data").

The following technical data with the associated formula symbols are used when considering the basic mechanical system requirements in the design calculations for sizing the drive. The data listed in the table below can be found in the section "Technical data" or they are determined using the formulas described on the following pages.

	Mechanical system Load	
	Linear motion system incl. transmission element gear	
Weight moment (Nm)	$\mathrm{M}_{\mathrm{g}}{ }^{5)}$	-
Frictional torque (Nm)	$-{ }^{4)}$	$\mathrm{M}_{\mathrm{Rs}^{3}}{ }^{3}$
Mass moment of inertia $\left(\mathrm{kgm}^{2}\right)$	$\mathrm{J}_{\mathrm{t}}{ }^{1)}$	$\mathrm{J}_{\mathrm{S}^{2)}}$
Max. permissible travel speed $(\mathrm{m} / \mathrm{s})$	-	$\mathrm{v}_{\text {max }}{ }^{3)}$
Max. permissible rotary speed $\left(\mathrm{min}^{-1}\right)$	-	$\left.\mathrm{n}_{\mathrm{P}}{ }^{1}\right)$
Max. permissible drive torque (Nm)	-	$\mathrm{M}_{\mathrm{P}}{ }^{3)}$

1) Determine the value using the appropriate formula
2) Length-dependent value, determined using the appropriate formula
3) Use the value from the table
4) Any additional process forces are to be taken into consideration as load moments
5) For vertical mounting position: Determine the value using the appropriate formula

For the drive configuration, all the relevant design calculation values for the mechanical components contained in the drive train must be determined - and be expressed in terms of or reduced to - the motor shaft. In other words, for a combination of mechanical components within the drive train, this will result in one value for each of the following:

- Frictional torque $\mathbf{M}_{\mathbf{R}}$
- Mass moment of inertia J_{ex}
- Maximum permissible travel speed $\mathbf{v}_{\text {mech }}$ or maximum permissible rotary speed $\mathbf{n}_{\text {mech }}$
- Maximum permissible drive torque $\mathbf{M}_{\text {mech }}$

The determination of the values for the mechanics in the drive chain based on the reference point motor shaft differs with regard to the "frame moves" and "carriage moves" constellation and is compared with the relevant formula to highlight the differences. For better transparency, the installation orientations "horizontal" and "vertical" are addressed and outlined in different sections.

Calculations

Calculations

Mounting orientation HORIZONTAL

Installation case

Frictional torque M_{R}

The value for the frictional torque of the linear motion system already includes the friction for an appropriately configured gear unit and has been reduced with reference to the motor shaft.

Frictional torque

Frame moves	Carriage moves
$M_{R}=M_{R s}$	$M_{R}=M_{R s}$

$M_{R}=$	frictional torque at	
	motor journal	(Nm)
$M_{R s}=$	frictional torque of system	(Nm)

Mass moment of inertia J_{ex}

The constants used in the formulas $\mathrm{k}_{\mathrm{Jfix}}, \mathrm{k}_{\mathrm{Jvar}}$ and $\mathrm{k}_{\mathrm{J}_{\mathrm{m}}}$ are determined dependent on the installation case "frame moves" or "carriage moves" and can be found in the table "Drive data" on page 10. The inertia of a configured gear is therefore already taken into account and reduced based on the motor shaft.

Maximum permissible travel speed $\mathrm{v}_{\text {mech }}$ or maximum permissible rotary speed $\mathrm{n}_{\text {mech }}$

The value for the maximum permissible travel speed of the linear motion system already includes the permissible rotary speed for any gear configured accordingly.

	Frame moves	Carriage moves	
Maximum permissible speed	$\mathrm{v}_{\text {mech }}=\mathrm{v}_{\max }$	$\mathrm{v}_{\text {mech }}=\mathrm{v}_{\max }$	$\mathrm{v}_{\text {max }}=$ maximum permissible travel speed of the linear motion system $\quad(\mathrm{m} / \mathrm{s})$ $\mathrm{v}_{\text {mech }}=$ maximum permissible travel speed of mechanical system $\quad(\mathrm{m} / \mathrm{s})$ $\mathrm{n}_{\text {mech }}=$ maximum permissible rotary speed of mechanical system
Maximum permissible rotary speed	$\mathrm{n}_{\text {mech }}=\frac{\mathrm{v}_{\text {mech }} \cdot \mathrm{i} \cdot 1000 \cdot 60}{\pi \cdot \mathrm{~d}_{3}}$	$\mathrm{n}_{\text {mech }}=\frac{\mathrm{v}_{\text {mech }} \cdot \mathrm{i} \cdot 1000 \cdot 60}{\pi \cdot \mathrm{~d}_{3}}$	$\begin{array}{ll} \mathrm{d}_{3} & =\text { diameter of belt pulley } \\ \pi & =\text { pi } \\ \mathrm{i} & =\text { gear ratio } \end{array}$

Maximum permissible drive torque $\mathbf{M}_{\text {mech }}$
The lowest (minimum) of all the values for permissible drive torque of all mechanical components contained in the drive train determines the maximum permissible drive torque of the mechanical system which has to be taken into consideration as the upper limit for the drive when sizing the motor.

	Frame moves	Carriage moves	
Maximum permissible drive torque	$M_{\text {mech }}=M_{p}$	$M_{\text {mech }}=M_{p}$	$\begin{aligned} \mathrm{M}_{\mathrm{p}}= & \text { maximum permissible drive torque } \\ & \text { of the linear motion system } \quad(\mathrm{Nm}) \\ \mathrm{M}_{\text {mech }}= & \text { maximum permissible drive torque } \\ & \text { of mechanical system } \end{aligned}$

\triangle When considering the complete drive train (mechanical system + motor/controller), the maximum torque of the motor can lie below the maximum value for the mechanical system (Mmech) and thus limit the maximum permissible drive torque of the overall drive train.
If the maximum torque of the motor lies above the upper limit for the mechanical system (Mmech), the maximum motor torque must be limited to the permitted value for the mechanical system.

Rough guide for pre-selection of the motor

The following conditions can be used as a rough guide for pre-selecting the motor.

Condition 1

The speed of the motor must be the same as or higher than the rotary speed for the mechanical system (but not exceeding the maximum permissible value).

$\mathrm{n}_{\text {max }}=$ maximum rotary speed of motor ($\min ^{-1}$)
$\mathrm{n}_{\text {mech }}=$ maximum permissible rotary speed of mechanical system
$\left(\mathrm{min}^{-1}\right)$

Calculations

Calculations

Mounting orientation HORIZONTAL

Condition 2

Consideration of the ratio of mass moments of inertia of the mechanical system and the motor. The mass moment of inertia ratio serves as an indicator for the control performance of a motorcontroller combination.
The mass moment of inertia of the motors is directly related to the motor size.

For preselection, experience has shown that the following ratios will result in high control performance. These are not rigid limits, but values exceeding them will require closer consideration of the specific application.

Application area	V
Handling	≤ 6.0
Processing	≥ 1.5

Condition 3

Estimation of the ratio of the static load torque to the continuous torque of the motor.
The torque ratio must be smaller than or equal to the empirical value of 0.6 . By looking at the required motor torque levels, this estimation roughly covers the dynamic characteristics which still have to be determined by plotting an exact movement profile.

Static load torque
Static load torque

Any additional forces arising from the use of power cable chains, for example, are not included in the observation of the moving total mass and must be taken into account additionally in the calculation where applicable.

In the overview Configuration and ordering, users can put together standard configurations, including gears and motor, for the various linear motion system sizes by selecting the appropriate options. By fulfilling the three conditions it is possible to see whether a standard motor selected in a particular configuration will generally be of a suitable size for the specific application.

Precise drive design

Pre-selecting the motor according to this rough guide is no substitute for the precise design calculations required for the drive, where all moments/torques and speed levels are taken into account. For precise calculation of the electric drive, including consideration of the specific movement profile, please refer to the performance data in the catalogs IndraDrive Cs and IndraDrive C. When sizing the drive, the maximum permitted values for speed, drive torque and acceleration must not be exceeded, in order to avoid damaging the mechanical system!

Mounting orientation VERTICAL

Installation case \mid Frame moves

Frictional torque M_{R}

The value for the frictional torque of the linear motion system already includes the friction for an appropriately configured gear unit and has been reduced with reference to the motor shaft.

Frictional torque

Frame moves
$M_{R}=M_{R s}$

Carriage moves
$M_{R}=M_{R s}$

$M_{R}=$	frictional torque	
	at motor journal	(Nm)
$M_{R s}=$	frictional torque of system	(Nm)

Mass moment of inertia J_{ex}

The constants used in the formulas $\mathrm{k}_{\mathrm{Jfix}}, \mathrm{k}_{\mathrm{J} \text { var }}$ and $\mathrm{k}_{\mathrm{J} \mathrm{m}}$ are determined dependent on the installation case "frame moves" or "carriage moves" and can be found in the table "Drive data" on page 10. The inertia of a configured gear is therefore already taken into account and reduced based on the motor shaft.

Calculations

Calculations

Mounting orientation VERTICAL

Maximum permissible travel speed $\mathrm{v}_{\text {mech }}$ or maximum permissible rotary speed $\mathrm{n}_{\text {mech }}$
The value for the maximum permissible travel speed of the linear motion system already includes the permissible rotary speed for any gear configured accordingly.

	Frame moves	Carriage moves	
Maximum permissible speed	$\mathrm{v}_{\text {mech }}=\mathrm{v}_{\max }$	$\mathrm{v}_{\mathrm{mech}}=\mathrm{v}_{\max }$	$\begin{aligned} \mathrm{v}_{\max }= & \text { maximum permissible travel speed } \\ & \text { of the linear motion system } \quad(\mathrm{m} / \mathrm{s}) \\ \mathrm{v}_{\text {mech }}= & \text { maximum permissible travel speed } \\ & \text { of mechanical system } \quad(\mathrm{m} / \mathrm{s}) \\ \mathrm{n}_{\text {mech }}= & \text { maximum permissible rotary speed } \end{aligned}$
Maximum permissible rotary speed	$\mathrm{n}_{\text {mech }}=\frac{\mathrm{v}_{\text {mech }} \cdot \mathrm{i} \cdot 1000 \cdot 60}{\pi \cdot \mathrm{~d}_{3}}$	$\mathrm{n}_{\text {mech }}=\frac{\mathrm{v}_{\text {mech }} \cdot \mathrm{i} \cdot 1000 \cdot 60}{\pi \cdot d_{3}}$	$\begin{array}{ll} \mathrm{d}_{3} & =\text { diameter of belt pulley } \\ \pi & =\text { pi } \\ \mathrm{i} & =\text { gear ratio } \end{array}$

Maximum permissible drive torque $\mathrm{M}_{\text {mech }}$

The lowest (minimum) of all the values for permissible drive torque of all mechanical components contained in the drive train determines the maximum permissible drive torque of the mechanical system which has to be taken into consideration as the upper limit for the drive when sizing the motor.

	Frame moves	Carriage moves	
Maximum permissible drive torque	$M_{\text {mech }}=M_{p}$	$M_{\text {mech }}=M_{p}$	$M_{p}=$ maximum permissible drive torque of the linear motion system (Nm) $M_{\text {mech }}=$ maximum permissible drive torque of mechanical system (Nm)

[^0]
Rough guide for pre-selection of the motor

The following conditions can be used as a rough guide for pre-selecting the motor.

Condition 1

The speed of the motor must be the same as or higher than the rotary speed for the mechanical system (but not exceeding the maximum permissible value).

Condition 2

Consideration of the ratio of mass moments of inertia of the mechanical system and the motor. The mass moment of inertia ratio serves as an indicator for the control performance of a motorcontroller combination.
The mass moment of inertia of the motors

is directly related to the motor size.
 $\mathrm{V}=$ ratio of mass moments of inertia of drive train and motor
$\mathrm{J}_{\mathrm{ex}}=$ mass moment of inertia of mechanical system $\left(\mathrm{kgm}^{2}\right)$
$\mathrm{J}_{\mathrm{m}}=$ mass moment of inertia, motor $\left(\mathrm{kgm}^{2}\right)$
$\mathrm{J}_{\mathrm{br}}=$ mass moment of inertia, motor brake
$\left(\mathrm{kgm}^{2}\right)$

For preselection, experience has shown that the following ratios will result in high control performance. These are not rigid limits, but values exceeding them will require closer consideration of the specific application.

Application area	V
Handling	≤ 6.0
Processing	≥ 1.5

Condition 3

Estimation of the ratio of the static load torque to the continuous torque of the motor.

$M_{0}=$ continuous motor torque	$(N m)$
$M_{\text {stat }}=$ static load torque	$(N m)$

The torque ratio must be smaller than or equal to the empirical value of 0.6 . By looking at the required motor torque levels, this estimation roughly covers the dynamic characteristics which still have to be determined by plotting an exact movement profile.

Static load torque	Frame moves	Carriage moves	$\mathrm{d}_{3}=$ diameter of belt pulley $\quad(\mathrm{mm})$
			$\begin{aligned} & \mathrm{M}_{\mathrm{R}}=\text { frictional torque at journal } \\ & \mathrm{m}_{\text {tot ca }}=\text { total mass with } \end{aligned}$
	$\mathrm{M}_{\text {stat }}=\mathrm{M}_{\mathrm{R}}+\mathrm{M}_{\mathrm{g}}$	$\mathrm{M}_{\text {stat }}=\mathrm{M}_{\mathrm{R}}+\mathrm{M}_{\mathrm{g}}$	moving carriage (kg)
			moving frame (kg)
			$\mathrm{m}_{\mathrm{mb}}=$ mass of the moving frame $\quad(\mathrm{kg})$
Weight moment			$\begin{align*} \mathrm{k}_{\mathrm{g} \text { fix }}= & \text { fixed mass proportion } \\ & \text { on the frame } \tag{kg} \end{align*}$
	$M_{g}=d_{3} \cdot \frac{m_{\text {tot } \mathrm{mb}} \cdot \mathrm{g}}{2000 \cdot \mathrm{i}}$	$M_{g}=d_{3} \cdot \frac{m_{\text {tot ca }} \cdot \mathrm{g}}{2000 \cdot \mathrm{i}}$	$\begin{aligned} \mathrm{k}_{\mathrm{g} \text { var }}= & \text { variable mass proportion } \\ & \text { on the frame } \quad(\mathrm{kg} / \mathrm{mm}) \end{aligned}$
			M_{g} = weight moment (Nm)
			m_{ca} = mass of the carriage incl. gear (kg)
Moved total mass			$\mathrm{m}_{\mathrm{ex}}=$ moved external load (kg)
	$\mathrm{m}_{\text {tot mb }}=\mathrm{m}_{\mathrm{ex}}+\mathrm{m}_{\mathrm{mb}}$	$m_{\text {tot ca }}=m_{\text {ex }}+m_{c a}+m_{m}+m_{b r}$	$\mathrm{m}_{\mathrm{m}}=\text { mass of motor } \quad(\mathrm{kg})$
			$\mathrm{m}_{\mathrm{br}} \quad=$ mass of the holding brake (kg)
	$m_{m b}=k_{\text {g fix }}+k_{\text {g var }} \cdot L$		

Any additional forces arising from the use of power cable chains, for example, are not included in the observation of the moving total mass and must be taken into account additionally in the calculation where applicable.

In the overview Configuration and ordering, users can put together standard configurations, including gears and motor, for the various linear motion system sizes by selecting the appropriate options. By fulfilling the three conditions it is possible to see whether a standard motor selected in a particular configuration will generally be of a suitable size for the specific application.

Precise drive design

Pre-selecting the motor according to this rough guide is no substitute for the precise design calculations required for the drive, where all moments/torques and speed levels are taken into account. For precise calculation of the electric drive, including consideration of the specific movement profile, please refer to the performance data in the catalogs IndraDrive Cs and IndraDrive C. When sizing the drive, the maximum permitted values for speed, drive torque and acceleration must not be exceeded, in order to avoid damaging the mechanical system!

Calculations

Calculation example

Mounting orientation HORIZONTAL
 Arrangement: Carriage moves
 (frame mounted on the mounting base)

Output data

In a handling task in horizontal installation position, a mass of 50 kg is to be moved by 2000 mm at a travel speed of $1.5 \mathrm{~m} / \mathrm{s}$. The frame should be mounted on the mounting base (carriage moves). No additional axial forces act. The selection was made based on the technical data and the installation space:

Omega module OBB-120:

- Carriage length $=330 \mathrm{~mm}$ (without clamping element)
- Motor attachment via angular planetary gearbox, $\mathrm{i}=9$
- with servo motor MSK 076C without brake

Module length L:

(In most cases, the recommended limit for excess travel is $2 x$ lead constant. The excess travel must be greater than the excess travel stopping distance, which is calculated for an exact design of the electrical drive.)

Frictional torque M_{R} :

(including the gear with gear ratio $i=9$)

Mass moment of inertia J_{ex} :

(including the gear with gear ratio $i=9$)

Maximum permissible rotary speed $\mathrm{n}_{\text {mech }}$:

(Motor attachment via gear, without consideration of the motor)
Limit value application

Maximum speed of the application $M_{\text {mech }}$:
(Motor attachment via gear)
Limit value application

Maximum permissible drive torque $M_{\text {mech }}$:
(Motor attachment via gear)
Limit value application

Excess travel: Max. travel distance:	L	$=\mathrm{s}_{\text {max }}+\mathrm{L}_{\mathrm{ca}}+\mathrm{L}_{\text {ad }}$
	$\mathrm{s}_{\text {e }}$	$=2 \cdot \mathrm{u}=2 \cdot 37.78=75.74=76 \mathrm{~m}$
		$=\mathrm{s}_{\text {eff }}+2 \cdot \mathrm{~s}_{\mathrm{e}}$
		$2000+2 \cdot 76=2152$
Module leng		$=2152+330+170=2652$

	$M_{R}=M_{R s}$
Linear module:	$M_{R s}=2.02 \mathrm{Nm}$

	$J_{\text {ex }}$	$=J_{\text {s }}+\mathrm{J}_{\text {t }}$
Linear module:	$\mathrm{J}_{\text {s }}$	$=\left(\mathrm{k}_{\mathrm{ffx}}+\mathrm{k}_{\mathrm{Jvar}}+\mathrm{L}\right) \cdot 10^{-6}$
		$=(1838.85+0 \cdot 2652) \cdot 10^{-6}$
		$=1838.85 \cdot 10^{-6} \mathrm{kgm}^{2}$
External load:	J_{t}	$=\left(m_{\text {ex }}+m_{m}+m_{b r}\right) \cdot k_{J m} \cdot 10^{-6}$
		$=(50+13.8+0) \cdot 36.15 \cdot 10^{-6}$
		$=2306.37 \cdot 10^{-6} \mathrm{kgm}^{2}$
Moment of inertia: $\mathrm{J}_{\text {ex }}$		$=1838.85 \cdot 10^{-6}+2306.37 \cdot 10^{-6}$
		$=4145.22 \cdot 10^{-6} \mathrm{kgm}^{2}$

$$
\mathrm{n}_{\text {mech }}=\left(\mathrm{V}_{\text {mech }} \cdot \mathrm{i} \cdot 1000 \cdot 60\right) / \pi \cdot \mathrm{d}_{3}
$$

Max. permissible travel speed:

$$
V_{\text {mech }}=V_{\max }=1.86 \mathrm{~m} / \mathrm{s}
$$

Max. permissible rotary speed:

$$
\begin{aligned}
\mathrm{n}_{\text {mech }} & =(1.86 \cdot 9 \cdot 1000 \cdot 60) / \pi \cdot 108.23) \\
& =2954 \mathrm{~min}^{-1}
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\text { Speed: } & \quad \mathrm{v}_{\text {mech }} \\
\text { Speed: } & \\
& \\
& \mathrm{n}_{\text {mech }}
\end{array}=(1.5 \mathrm{~m} / \mathrm{s} \cdot 9 \cdot 1000 \cdot 60) / \pi \cdot 108.23\right)
$$

	$M_{\text {mech }}=M_{P}$
Drive torque:	$M_{\text {mech }}=17.1 \mathrm{Nm}$

Checking the motor preselection:
selected motor MSK 076C without brake

Condition 1:

$$
\begin{array}{lll}
\text { Speed: } & \mathrm{n}_{\max } \geq \mathrm{n}_{\text {mech }} \\
& 4500 \geq 2382
\end{array}
$$

condition fulfilled - motor size OK

Condition 2:

| Mass moment
 of inertia ratio: V $=\mathrm{J}_{\mathrm{ex}} /\left(\mathrm{J}_{\mathrm{m}}+\mathrm{J}_{\mathrm{Br}}\right)$
 Motor inertia: J_{m} $=4300 \cdot 10^{-6} \mathrm{kgm}^{2}$
 Brake moment
 of inertia: J_{Br} $=0 \mathrm{kgm}^{2}$ (without brake)
 Inertia ratio: V $=4145.22 \cdot 10^{-6} /\left(4300 \cdot 10^{-6}+0 \cdot 10^{-6}\right)$
 $=0.96$
 Condition for handling: $\mathrm{V} \quad$ ≤ 6
 0.96 ≤ 6 |
| :--- | :--- | :--- |
| condition fulfilled - motor size OK |

Condition 3:

Torque ratio:	$\mathrm{M}_{\text {stat }} / \mathrm{M}_{0} \leq 0.6$
Static	
Load torque:	$M_{\text {stat }}=M_{R}+M g$
Weight moment: Static	$\mathrm{M}_{\mathrm{g}} \quad=0 \mathrm{Nm}$ (horizontal mounting orientation)
Load torque:	$\mathrm{M}_{\text {stat }}=2.02 \mathrm{Nm}$
Continuous	
motor torque:	$\mathrm{M}_{0}=12 \mathrm{Nm}$
Torque ratio:	$2.02 / 12=0.17$
	$0.17 \leq 0.6$

Result:

Calculations

Calculation example

Mounting orientation VERTICAL

Arrangement: Frame moves
(carriage mounted on the mounting base)

Output data

In a handling task in vertical installation position, a mass of 20 kg is to be moved by 1000 mm at a travel speed of $1.5 \mathrm{~m} / \mathrm{s}$. No additional axial forces act. The frame should enter the working range (frame moves). The selection was made based on the technical data and the installation space:

Omega module OBB-085:

- Carriage length $=260 \mathrm{~mm}$ (without clamping element
- Motor attachment via angular planetary gearbox, $i=8$
- with servo motor MSK 050C wit brake

Module length L:

(In most cases, the recommended limit for excess travel is $2 x$ lead constant. The excess travel must be greater than the excess travel stopping distance, which is calculated for an exact design of the electrical drive.)

Frictional torque M_{R} :

(including the gear with gear ratio $i=8$)

Mass moment of inertia J_{ex} :

(including the gear with gear ratio $\mathrm{i}=8$)

Maximum permissible rotary speed $\mathrm{n}_{\text {mech }}$:

(Motor attachment via gear, without consideration of the motor)
Limit for mechanical system

Maximum speed of the application $M_{\text {mech }}$:

(Motor attachment via gear)
Limit value application

Maximum permissible drive torque $M_{\text {mech }}$:
(Motor attachment via gear)
Limit for mechanical system

$$
\begin{array}{lll}
& \mathrm{L} & =\mathrm{s}_{\text {max }}+\mathrm{L}_{\mathrm{ca}}+\mathrm{L}_{\mathrm{ad}} \\
\text { Excess travel: } & \mathrm{s}_{\mathrm{e}} & =2 \cdot \mathrm{u}=2 \cdot 31.88=63.76=64 \mathrm{~mm} \\
\text { Max. travel } \\
\text { distance: } & & \mathrm{s}_{\max }=\mathrm{s}_{\text {eff }}+2 \cdot \mathrm{~s}_{\mathrm{e}} \\
& & =1000+2 \cdot 64=1128 \mathrm{~mm} \\
\text { Module length: } & \mathrm{L} & =1128+260+130=1518 \mathrm{~mm}
\end{array}
$$

$$
\begin{array}{ll}
& =J_{\mathrm{s}}+\mathrm{J}_{\mathrm{t}} \\
\text { Linear module: } & \mathrm{J}_{\mathrm{s}} \\
& =\left(\mathrm{k}_{\mathrm{Jfix}}+\mathrm{k}_{\mathrm{Jvar}}+\mathrm{L}\right) \cdot 10^{-6} \\
& =(123.47+0.2821 \cdot 1518) \cdot 10^{-6} \\
& =551.657 \cdot 10^{-6} \mathrm{kgm}^{2} \\
\text { External load: } \quad \mathrm{J}_{\mathrm{t}} & =\mathrm{m}_{\mathrm{e}} \cdot \mathrm{k}_{\mathrm{J}} \cdot 10^{6} \\
& =20 \cdot 25.74 \cdot 10^{-6} \mathrm{kgm}^{2} \\
& =514.732 \cdot 10^{-6} \mathrm{kgm}^{2} \\
\text { Moment of inertia: } \mathrm{J}_{\mathrm{ex}} & =551.657 \cdot 10^{-6}+514.732 \cdot 10^{-6} \\
& =1066.389 \cdot 10^{-6} \mathrm{kgm}^{2} \\
& \\
& \\
&
\end{array}
$$

$$
\mathrm{n}_{\text {mech }}=\left(\mathrm{V}_{\text {mech }} \cdot \mathrm{i} \cdot 1000 \cdot 60\right) / \pi \cdot \mathrm{d}_{3}
$$

Max. permissible travel speed:

$$
V_{\text {mech }}=V_{\text {max }}=2.13 \mathrm{~m} / \mathrm{s}
$$

Max. permissible rotary speed:

$$
\begin{aligned}
\mathrm{n}_{\text {mech }} & =(2.13 \cdot 8 \cdot 1000 \cdot 60) / \pi \cdot 81.17) \\
& =4009 \mathrm{~min}^{-1}
\end{aligned}
$$

$$
\begin{array}{|lll}
\text { Speed: } & & v_{\text {mech }}=1.5 \mathrm{~m} / \mathrm{s} \\
\text { Speed: } & & \left.\mathrm{n}_{\text {mech }}=(1.5 \cdot 8 \cdot 1000 \cdot 60) / \pi \cdot 81.17\right) \\
& & =2823 \mathrm{~min}^{-1}
\end{array}
$$

Checking the motor preselection:
selected motor MSK 050C with brake

Condition 1:

Speed: \quad $n_{\max } \geq n_{\text {mech }}$ $6000 \geq 2823$ condition fulfilled - motor size OK	

Condition 2:

Condition 3:

Torque ratio: $\quad \mathrm{M}_{\text {stat }} / \mathrm{M}_{0} \leq 0.6$
Static
Load torque: $\quad M_{\text {stat }}=M_{R}+M_{g}$
Weight moment: $\quad M_{g}=d_{3} \cdot\left(m_{e x}+m_{m b}\right) \cdot g / 2000 \cdot i$
Mass of the moving frame:

$$
\begin{aligned}
\mathrm{m}_{\mathrm{mb}} & =\mathrm{k}_{\mathrm{g} \text { fix }}+\mathrm{k}_{\mathrm{g} \text { var }} \cdot \mathrm{L} \\
& =1.05+0.0108 \cdot 1518 \\
& =17.44 \mathrm{~kg}
\end{aligned}
$$

Moved
external load

$$
\begin{aligned}
\mathrm{m}_{\mathrm{ex}} & =20 \mathrm{~kg} \\
\mathrm{M}_{\mathrm{g}} & =81.17 \cdot(17.44+20) \cdot 9.81 / 2000 \cdot 8 \\
& =1.86 \mathrm{Nm}
\end{aligned}
$$

> | Static | |
| :--- | :--- |
| Load torque: | $\mathrm{M}_{\text {stat }}=0.93+1.86=2.79 \mathrm{Nm}$ |
| Continuous | |
| motor torque: | $\mathrm{M}_{0}=5 \mathrm{Nm}$ |
| Torque ratio: | $2.79 / 5=0.56$ |
| | $0.56 \leq 0.6$ |

condition fulfilled - motor size OK

Result:

Omega module OBB-085	
Length	$\mathrm{L}=1518 \mathrm{~mm}$
Max. travel distance	$\mathrm{s}_{\text {max }}=1128 \mathrm{~mm}$
Carriage length	$\mathrm{L}_{\mathrm{ca}}=260 \mathrm{~mm}$
Drive	toothed belt drive
Motor mounting	via angular planetary gearbox
Gear ratio	$i=8$
Preselected motor:	MSK 050C with brake
Arrangement:	Carriage fixed on the mounting base, frame moves Mounting orientation vertical
For precise sizing of the electric drive, the motor-controller combination must always be considered, as the performance data (e.g. maximum useful speed and maximum torque) will depend on the controller used.	
When doing this, the following data must be considered:	
- Frictional torque: $M_{R} \quad=0.93 \mathrm{Nm}$	
- Mass moment of inertia: $\quad J_{\text {ex }}=1066.389 \cdot 10^{-6} \mathrm{kgm}^{2}$	
- Speed:	$\begin{aligned} & \mathrm{v}_{\text {mech }}=1.5 \mathrm{~m} / \mathrm{s} \\ & \left(\mathrm{n}_{\text {mech }}=2823 \mathrm{~min}^{-1}\right) \end{aligned}$
- Limit value for	
Drive torque:	$\mathrm{M}_{\text {mech }}=5 \mathrm{Nm}$

The motor torque must be limited to 5 Nm on the drive side!

- Limit value for
acceleration:

$$
\mathrm{a}_{\max }=50 \mathrm{~m} / \mathrm{s}^{2}
$$

- Limit value for
speed:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{mech}}=2.13 \mathrm{~m} / \mathrm{s} \\
& \left(\mathrm{n}_{\text {mech }}=4009 \mathrm{~min}^{-1}\right)
\end{aligned}
$$

After the excess travel stopping distance has been determined during the exact design, check whether the selected excess travel is sufficient or whether, if appropriate, an adjustment must be made.
Besides the preferred type MSK 050C, other motors with identical connection dimensions can be adapted while taking care not to exceed the calculated limits.

Configuration and ordering

OBB-055

Configuration and ordering

Ordering example: see "Inquiry/order"

Note:

When a shock absorber is used, the maximum travel distance is reduced due to the construction ($\mathrm{s}_{\max }$). For the calculation, the maximum travel distance must therefore be reduced by the value $\mathrm{s}_{\text {red }}$ per side or per shock absorber, see section "Accessories".

1) The delivery length of the cable duct corresponds to the length of the profiled support. For a different length, please order the cable duct as a single item (ordering "Switches and attachments" page 44)
2) When the servo motor is mounted, the delivery is only made in accordance with the motor assembly shown in the "Delivery form" section (note the position of the motor connectors)!

Length L(mm):

$$
\mathrm{L}=\mathrm{s}_{\max }+\mathrm{L}_{\mathrm{ca}}+\mathrm{L}_{\mathrm{ad}}
$$

$$
\mathrm{s}_{\mathrm{max}}=\mathrm{s}_{\mathrm{eff}}+2 \cdot \mathrm{~s}_{\mathrm{e}}
$$

3) Attachment kit can also be delivered without motor. When ordering, enter the motor type "00"!
4) The switches are selected according to the installation situation (carriage / frame moves)! See section "Switch mounting".

$\mathrm{L}_{\mathrm{ca}}=$	carriage length	
$\mathrm{L}_{\mathrm{ad}}=$	additional length	(mm)
	(for the value, see the	
	table in the section	
	"General technical data")	
$\mathrm{S}_{\max }=$	maximum travel distance $\quad(\mathrm{mm})$	
$\mathrm{S}_{\text {eff }}=$	effective travel distance	(mm)
$\mathrm{s}_{\mathrm{e}}=$	excess travel	(mm)

Configuration and ordering

OBB-055

Dimensions

For dimensions of end plate, see section
"Attachment of additional devices"

1) For the connector position of the motor, observe section "Delivery form"
$\mathrm{L}=$ length
D = motor width
C = gear height
$\mathrm{L}_{\mathrm{m}}=$ motor length
$\mathrm{L}_{\text {ge }}=$ gear length
$\mathrm{L}_{\mathrm{ca}}=$ carriage length $\quad(\mathrm{mm})$
$\mathrm{L}_{\mathrm{ad}}=$ additional length (mm)
(for the value, see the table in the
section "General technical data")
$\mathrm{s}_{\max }=$ maximum travel distance (mm)
$s_{\text {eff }}=$ effective travel distance (mm)
$\mathrm{s}_{\mathrm{e}}=$ excess travel (mm)

Configuration and ordering

OBB-085

Configuration and ordering

Short product name, length
OBB-085-NN-1, ... mm

Ordering example: see "Inquiry/order"

Note:

When a shock absorber is used, the maximum travel distance is reduced due to the construction ($s_{\text {max }}$). For the calculation, the maximum travel distance must therefore be reduced by the value $\mathrm{s}_{\text {red }}$ per side or per shock absorber, see section "Accessories".

1) The delivery length of the cable duct corresponds to the length of the profiled support. For a different length, please order the cable duct as a single item (ordering "Switches and attachments" page 44)
2) When the servo motor is mounted, the delivery is only made in accordance with the motor assembly shown in the "Delivery form" section (note the position of the motor connectors)!

Length $L(\mathrm{~mm})$:

$$
\frac{L=s_{\max }+L_{\mathrm{ca}}+L_{\mathrm{ad}}}{\mathrm{~s}_{\max }=\mathrm{s}_{\mathrm{eff}}+2 \cdot \mathrm{~s}_{\mathrm{e}}}
$$

3) Attachment kit can also be delivered without motor. When ordering, enter the motor type "00"!
4) The switches are selected according to the installation situation (carriage / frame moves)! See section "Switch mounting".

$\mathrm{L}_{\mathrm{ca}}=$	carriage length	
$\mathrm{L}_{\mathrm{ad}}=$	additional length	(mm)
	(for the value, see the table in the	
	section "General technical data")	
$\mathrm{s}_{\max }=$	maximum travel distance	(mm)
$\mathrm{S}_{\text {eff }}=$	effective travel distance	(mm)
$\mathrm{s}_{\mathrm{e}}=$	excess travel	(mm)

Configuration and ordering

OBB-085

Dimensions

MG01, MG02, MG03, MG04

For dimensions of end plate, see section
"Attachment of additional devices"

Motor ${ }^{1)}$	Dimen Gear u 01/02 L_{ge}	ions (mm) it G 03/04 C	$\begin{gathered} \text { MG } \\ 10 \\ L_{\text {ge }} \end{gathered}$	Mot	without brake	with brake
MSK 050C	192.5	124.5	142	98	203.0	233.0
MSM 041B	187.5	124.5	142	80	112.0	149.0

1) For the connector position of the motor, observe section "Delivery form"
$\mathrm{L}=$ length
D $=$ motor width
C = gear height
$\mathrm{L}_{\mathrm{m}}=$ motor length
$\mathrm{L}_{\text {ge }}=$ gear length
$\mathrm{L}_{\mathrm{ca}}=$ carriage length
(mm)
$\mathrm{L}_{\mathrm{ad}}=$ additional length (mm) (for the value, see the table in the section "General technical data")
$\mathrm{s}_{\max }=$ maximum travel distance (mm)
$\mathrm{s}_{\text {eff }}=$ effective travel distance (mm)
$\mathrm{s}_{\mathrm{e}}=$ excess travel
(mm)

Configuration and ordering

OBB-120

Configuration and ordering

Ordering example: see "Inquiry/order"

Note:

When a shock absorber is used, the maximum travel distance is reduced due to the construction ($\mathrm{s}_{\max }$). For the calculation, the maximum travel distance must therefore be reduced by the value $\mathrm{s}_{\text {red }}$ per side or per shock absorber, see section "Accessories".

1) The delivery length of the cable duct corresponds to the length of the profiled support. For a different length, please order the cable duct as a single item (ordering "Switches and attachments" page 44)
2) When the servo motor is mounted, the delivery is only made in accordance with the motor assembly shown in the "Delivery form" section (note the position of the motor connectors)!

Length L (mm):

$$
\frac{\mathrm{L}=\mathrm{s}_{\max }+\mathrm{L}_{\mathrm{ca}}+\mathrm{L}_{\mathrm{ad}}}{\mathrm{~s}_{\max }=\mathrm{s}_{\mathrm{eff}}+2 \cdot \mathrm{~s}_{\mathrm{e}}}
$$

3) Attachment kit can also be delivered without motor. When ordering, enter the motor type " 00 "!
4) The switches are selected according to the installation situation (carriage / frame moves)! See section "Switch mounting".

$\mathrm{L}_{\mathrm{ca}}=$	Carriage length	
$\mathrm{L}_{\mathrm{ad}}=$	additional length	(mm)
	(for the value, see the table in the	
	section "General technical data")	
$\mathrm{s}_{\max }=$	maximum travel distance	(mm)
$\mathrm{s}_{\text {eff }}=$	effective travel distance	(mm)
$\mathrm{s}_{\mathrm{e}}=$	excess travel	(mm)

Configuration and ordering

OBB-120

Dimensions

For dimensions of end plate, see section
"Attachment of additional devices"

1) For the connector position of the motor, observe section "Delivery form"
$\mathrm{L}=$ length
D = motor width
$\mathrm{C}=$ gear height
$\mathrm{L}_{\mathrm{m}}=$ motor length
$\mathrm{L}_{\text {ge }}=$ gear length
$\mathrm{L}_{\mathrm{ca}}=$ carriage length $\quad(\mathrm{mm})$
$\mathrm{L}_{\mathrm{ad}}=$ additional length $\quad(\mathrm{mm})$
(for the value, see the table in the section "General technical data")
$\mathrm{S}_{\text {max }}=$ maximum travel distance (mm)
$\mathrm{s}_{\text {eff }}=$ effective travel distance (mm)
$\mathrm{s}_{\mathrm{e}}=$ excess travel (mm)

Switch mounting - frame moves (carriage fixed)

Switching principle

- Proximity or mechanical switches on the carriage (TT)
- Switch activation via control strip on the frame (HK)

Overview of switching system

3 Mechanical switches (with attachments)
4 Proximity switch (with attachments)
5 Control strip on the frame
6 Socket and plug
7 Switch mounting profile

Pos.	Description	OBB-055 Material number included in (option ${ }^{1)}$)		OBB-085 Material number included in (option ${ }^{1)}$)		OBB-120 Material number included in (option ${ }^{1)}$)	
3	Mechanical switch with attachments	R1175 00162	(65)	R1175 00162	(65)	R1175 00162	(65)
	Mechanical switch	R3453 04016	(65)	R3453 04016	(65)	R3453 04016	(65)
4	Proximity switch, PNP NC	R3453 04001	(61)	R3453 04001	(61)	R3453 04001	(61)
	Proximity switch, PNP NO	R3453 04003	(63)	R3453 04003	(63)	R3453 04003	(63)
	Attachments for proximity switch	R1175 00163	(61), (63)	R1175 00163	(61), (63)	R1175 00163	(61), (63)
5	2 control strips with attachments	R1175 00159	(39)	R1175 00160	(41)	R1175 00161	(42)
6	Socket + plug	R1175 00153	(17)	R117 500153	(17)	R1175 00153	(17)
7	Switch mounting profile with attachments	R1175 00164	(39)	R1175 00164	(41)	R1175 00164	(42)

1) For options, see "Configuration and ordering"

Proximity switches with attachments

Mechanical switches with attachments

DBR AUTOMATION SL, Malaga Spain, Telf: +34951709474 E-mail: comercial@dbrautomation.com

Switch mounting - carriage moves (frame fixed)

Switching principle

- Proximity or mechanical switches on the frame (HK)
- Switch activation via switching angle on the carriage (TT)

Overview of switching system

3 Mechanical switch (with attachments)
4 Proximity switch (with attachments)
5 Switching angle
6 Socket and plug
7 Cable duct

Pos.	Description	OBB-055 Material number included in (option ${ }^{1)}$)		OBB-085 Material number included in (option ${ }^{11}$)		OBB-120 Material number included in (option ${ }^{1)}$)	
3	Mechanical switch with attachments	R1175 00151	(75)	R1175 00151	(75)	R1175 00151	(75)
	Mechanical switch without attachments	R3453 04016	(75)	R3453 04016	(75)	R3453 04016	(75)
4	Proximity switch, PNP NC	R3453 04001	(61)	R3453 04001	(61)	R3453 04001	(61)
	Proximity switch, PNP NO	R3453 04003	(63)	R3453 04003	(63)	R3453 04003	(63)
	Attachments for proximity switch	R1175 00157	(71), (73)	R1175 00158	(71), (73)	R1175 00158	(71), (73)
5	Switching angle with attachments	R1175 00156	(36)	R1175 00156	(36)	R1175 00156	(36)
6	Socket + plug	R1175 00153	(7)	R1175 00153	(17)	R1175 00153	(17)
7	Cable duct, $L_{K}=$	R0396 $62017{ }^{\text {2) }}$	(20)	R0396 $62017{ }^{\text {2) }}$	(20)	R0396 $62017{ }^{\text {2) }}$	(20)

1) For options, see "Configuration and ordering"
$L_{K}=$ length of the cable duct (mm)
2) A length must always be specified when ordering cable ducts.

For example "R0396 620 17, 285 mm".

Proximity switches with attachments / cable duct

Mechanical switches with attachments

OBB-120

Proximity switches with attachments / cable duct

Mechanical switches with attachments

Cable duct

- The cable duct is fastened in the T-slots on the side of the frame. Fastening screws widen the profile and give the cable duct a secure hold.

For the slot position, see
"Configuration and ordering" tables and "Dimension drawings".
The cable duct will accommodate up to two cables for mechanical switches and three cables for proximity switches.
Fastening screws and cable grommets are included.

Socket and plug

Attach the socket at the end with the sensors or switches. The socket and plug are not pre-wired. Since the mounting arrangements allow shifting of the switches, the switch activation points can be optimized during commissioning. The plug can be mounted in three directions.

	Socket and plug
Use	R117500153
Designation	for OBB-055, $-085,-120$
Version	angled, for suspension in the lateral slot of the OBB
Operating current per contact	max. 8 A
Operating voltage	$150 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
1. Connection type	Straight socket, 16 -pin, soldered connection
2. Connection type	Coupling / flange socket, 16 -pin, soldered connection
Cable bushing, housing	1 seal with hole $2 \times 5.5 \mathrm{~mm}, 1 \times 3.5 \mathrm{~mm}$
	1 adaptable seal, max. 14 mm diameter
incl. cap and blind plug	

Attachments and accessories

Sensors

Proximity sensor with free line end

Material numbers / technical data				
Use	Limit switch	Reference switch	Limit switch	Reference switch
Material number	R345304001	R345304003	R345304002	R345304004
Designation	BES 517-351-NO-C-03	BES 517-398-NO-C-03	BES 517-352-NO-C-03	BES 517-399-NO-C-03
Functional principle	proximity			
Operating voltage	10-30 V DC			
Load current	$\leq 200 \mathrm{~mA}$			
Switching function	PNP/normally closed (NC)	PNP/normally open (NO)	NPN/normally closed (NC)	NPN/normally open (NO)
Connection type	Line 3 m , 3-pin, free line end			
Function indication	\checkmark			
Short-circuit protection	\checkmark			
Reverse polarity protection	\checkmark			
Switching frequency	2.5 kHz			
Max. perm. approach speed	depending on the switch flag length			
Suitable for drag chains ${ }^{1)}$	-			
Can withstand torsion ${ }^{1)}$	-			
Weld spark resistant ${ }^{1)}$	-			
Cable cross-section ${ }^{1)}$	$3 \times 0.14 \mathrm{~mm}^{2}$			
Cable diameter $\mathrm{D}^{1)}$	$3.5{ }^{ \pm 0.13} \mathrm{~mm}$			
Bending radius, static ${ }^{1)}$	12 mm			
Bending radius, dynamic ${ }^{1)}$	12 mm			
Bending cycles ${ }^{1)}$	-			
Ambient temperature	$-40{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$			
Protection class	IP65			
MTTFd (acc. to EN ISO 13849-1)	MTTFd $=830$ years		MTTFd $=585$ years	
Certifications and approvals ${ }^{2)}$	CE : ULI) Usiten $_{\text {RoHS }}$			

1) Technical data only for the cast-on connection line at the proximity sensor.

Even more performance, e.g. extension cables are offered for use in a power cable chain (see the following pages).
2) For these products no (CCC) certificate is necessary for introduction into the Chinese market.

Attachments and accessories

Sensors

Proximity sensor with M8x1 plug

Use	Limit switch	Reference switch	Limit switch	Reference switch
Material number	R901420149	R901420156	R901420152	R901420158
Designation	$\begin{gathered} \text { BES 517-351-NO-C- } \\ \text { S49-00.2 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { BES 517-398-NO-C- } \\ \text { S49-00.2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { BES 517-352-NO-C- } \\ \text { S49-00.2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { BES 517-399-NO-C- } \\ \text { S49-00.2 } \\ \hline \end{gathered}$
Functional principle	proximity			
Operating voltage	10-30 V DC			
Load current	$\leq 200 \mathrm{~mA}$			
Switching function	PNP/normally closed (NC)	PNP/normally open (NO)	NPN/normally closed (NC)	NPN/normally open (NO)
Connection type	Cable 0.2 m and plug M8 x 1, 3-pin with knurled screw			
Function indication	\checkmark			
Short-circuit protection	\checkmark			
Reverse polarity protection	\checkmark			
Switching frequency	2.5 kHz			
Max. permissible approach speed	depending on the switch flag length			
Suitable for drag chains ${ }^{1)}$	-			
Can withstand torsion ${ }^{1)}$	-			
Weld spark resistant1)	-			
Cable cross-section ${ }^{1)}$	$3 \times 0.14 \mathrm{~mm}^{2}$			
Cable diameter ${ }^{11}$	$3.5{ }^{ \pm 0.15} \mathrm{~mm}$			
Bending radius, static ${ }^{1)}$	12 mm			
Bending radius, dynamic ${ }^{1)}$	12 mm			
Bending cycles ${ }^{1}$	-			
Ambient temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
Protection class	IP65			
MTTFd (acc. to EN ISO 13849-1)	MTTFd $=830$ years		MTTFd $=585$ years	
Certifications and approvals ${ }^{\text {2 }}$	CE (U1) vi RoHS			

1) Technical data only for the cast-on connection line at the proximity sensor.

Even more performance, e.g. extension cables are offered for use in a power cable chain (see the following pages).
2) For these products no certificate is necessary for introduction into the Chinese market.

Attachments and accessories

Switches

Mechanical switch

Material numbers / technical data		
Use	Limit switch	
Material number	R345304016 ${ }^{1)}$	R347600305 ${ }^{\text {2) }}$
Designation	BNS 819-X496-99-R-11	BNS 819-X510-99-R-10
Functional principle	Mechanical, roller	
Operating voltage	250 V AC	
Load current	$\leq 5 \mathrm{~A}$	
Switching function	Single-pole changeover/ (NC: C+NC, NO: C+NO)	
Connection type	Screw connection, without line	
Function indication	-	
Switching frequency	3.3 Hz	
Max. permissible approach speed	$1 \mathrm{~m} / \mathrm{s}$	
Ambient temperature	$-5^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Protection class	IP67	
B10d value	5×10^{6} (wet area); 10×10^{6} (dependent on current load (dry area))	
Certifications and approvals, housing	CE ©C) RoHS	
Certifications and approvals, switching element	CE © SC. ROHS	

Attachments and accessories

Switches

Mechanical sensor with M8x1 plug

Material numbers / technical data

Use	Limit switch	Reference switch	Limit switch	Reference switch
Material number	R913048215	R913048214	R913048217	R913048216
Designation	BNS 819-X1002-99-R-10	BNS 819-X1001-99-R-10	BNS 819-X1004-99-R-10	BNS 819-X1003-99-R-10
Functional principle	Mechanical, roller			
Operating voltage	10-30 VDC			
Load current	$\leq 200 \mathrm{~mA}$			
Switching function	PNP/normally closed (NC)	PNP/normally open (NO)	NPN/normally closed (NC)	NPN/normally open (NO)
Connection type	Cable 0.2 m and plug M8 $\times 1$, 3-pin with knurled screw			
Function indication	-			
Short-circuit protection	-			
Reverse polarity protection	-			
Switching frequency	3.3 Hz			
Max. perm. approach speed	$1 \mathrm{~m} / \mathrm{s}$			
Suitable for drag chains ${ }^{1)}$	-			
Can withstand torsion ${ }^{1)}$	-			
Weld spark resistant ${ }^{1)}$	-			
Cable cross-section ${ }^{1)}$	$3 \times 0.14 \mathrm{~mm}^{2}$			
Cable diameter $\mathrm{D}^{1)}$	$4.3 \pm 0.2 \mathrm{~mm}$			
Bending radius, static ${ }^{1)}$	12 mm			
Bending radius, dynamic ${ }^{1)}$	12 mm			
Bending cycles ${ }^{1)}$	-			
Ambient temperature	$-5^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$			
Protection class	IP65			
B10d value	5×10^{6} (wet area); 10×10^{6} dependent on current load (dry area)			
Certifications and approvals ${ }^{2)}$	CE SB RoHS			

1) Technical data only for the cast-on connection line at the mechanical switch.

Even more performance, e.g. extension cables are offered for use in a power cable chain (see the following pages).
2) For these products no certificate is necessary for introduction into the Chinese market.

Attachments and accessories

Extension pieces

Assembled single-sided

Material numbers

Use	Extension cable		
Material number	R911344602	R911344619	R911344620
Designation	$7000-08041-6500500$	$7000-08041-6501000$	$7000-08041-6501500$
Length (L)	5.0 m	10.0 m	15.0 m
1. Connection type	Straight socket, M8 x 1, 3-pin		
2. Connection type	free line end		

Assembled double-sided

Material numbers

Use	Extension cable			
Material number	R911344621	R911344622	R911344623	R911344624
Designation	$7000-88001-6500050$	$7000-88001-6500100$	$7000-88001-6500200$	$7000-88001-6500500$
Length (L)	0.5 m	1.0 m	2.0 m	5.0
1. Connection type	Straight socket, M8x1, 3-pin			
2. Connection type	Straight socket, M8x1, 3-pin			

Technical data for single and double-sided pre-assembled extensions

a) Contour for corrugated tube inner diameter 6.5 mm
b) Cable grommet
c) Cable label in accordance with labeling directive

Extension pieces

Plug

Material numbers / technical data		
Use	Plug, single	
Material number	R901388333	R901388352
Designation	7000-08331-0000000	7000-12491-0000000
Version	straight	
Operating current per contact	max. 4 A	
Operating voltage	max. 32 V AC/DC	
Connection type	Straight socket, M8x1, 3-pin Insulation displacement contact technology, self-locking screw thread	Straight socket, M12x1, 4-pin Insulation displacement contact technology, self-locking screw thread
Function indication	- $\quad-\quad$ l	
Operating voltage indicator	-	
Connection cross-section	$0.14 \ldots 0.34 \mathrm{~mm}^{2}$	
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Protection class	IP67 (plugged in \& screwed down)	
Certifications and approvals	cinus PG RoHS	

Adapter

Material numbers / technical data

Use	Adapter	Adapter or distributor
Material number	R911344591	R911344592
Designation	7000-42201-0000000	7000-41211-0000000
Version	straight for 1 sensor	straight, for 1-2 sensors
Operating current per contact	max. 4 A	
Operating voltage	$\max .32 \mathrm{~V} \mathrm{AC/DC}$	
1. Connection type	Straight socket, M8x1, 3-pin, self-locking screw thread	$\begin{gathered} 2 \times \text { straight sockets, M8x1, 3-pin, } \\ \text { self-locking screw thread } \\ \hline \end{gathered}$
2. Connection type	Straight plug, M12×1, 3-pin, self-locking screw thread	Straight plug, M12×1, 4-pin, self-locking screw thread
Function indication	- _	
Operating voltage indicator	-	
Connection cross-section	-	
Ambient temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Protection class	IP67 (plugged in \& screwed down)	
Certifications and approvals	RoHS	${ }_{\text {USTED }}^{\text {(UL) }}$ ROHS

Distributors

Passive distributors

R901429917

(-) (+)

Material numbers / technical data

Use	Passive distributors		
Material number	R901425737	R901429917	R911344592
Designation	8000-84070-0000000	8000-84071-0000000	See the adapter for technical data and drawing
Version	straight, for 1-4 sensors		
Operating current per contact	max. 2 A		
Operating voltage	24 V DC		
Switching logic	PNP	NPN	
1. Connection type	4x straight socket, M8x1, 3-pin, self-locking screw thread		
2. Connection type	Straight plug, M12x1, 8-pin, self-locking screw thread		
Function indication	\checkmark		
Operating voltage indicator	\checkmark		
Connection cross-section	-		
Ambient temperature	-20° to $+70^{\circ} \mathrm{C}$		
Protection class	IP67 (plugged in and screwed down)		
Certifications and approvals			

Accessories for passive distributors

Material numbers / technical data

Use	For passive distributor R911344592	For passive distributors R901425737/ R901429917
Holding plate	R913047341	-
Designation	$7000-99061-0000000$	-
Packaging unit	1 pc	-
Screw plug	-	R913047322
Designation	-	3858627
Packaging unit	-	10 pc.

Extensions for passive distributors

Extensions for passive plugs

R911371982

Material numbers / technical data

Use	Extension cable for passive distributor R911344592		Extension cable for passive distributors R901425737 / R901429917	
Material number	R911371982	R911371980	R911371981	R911371983
Designation	7000-40021-6540500	7000-12221-6541500	7000-48001-3770500	7000-17041-3771500
Length	5.0 m	15.0 m	5.0 m	15.0 m
1. Connection type	Straight socket, M12x1, 4-pin		Straight socket, M12x1, 8-pin	
2. Connection type	Straight plug, M12x1, 4-pin	free line end	Straight plug, M12x1, 8-pin	free line end
Function indication	-			
Operating voltage indicator	-			
Type of cable	PUR black		PUR gray	
Operating voltage	$30 \mathrm{~V} \mathrm{AC/DC}$			
Operating current per contact	max. 4 A per contact		max. 2 A per contact	
Suitable for drag chains	\checkmark			
Can withstand torsion	\checkmark			
Weld spark resistant	\checkmark			
Cable cross-section	$4 \times 0.34 \mathrm{~mm}^{2}$		$8 \times 0.34 \mathrm{~mm}^{2}$	
Cable diameter D	$4.7 \pm 0.2 \mathrm{~mm}$		$6.2 \pm 0.3 \mathrm{~mm}$	
Bending radius, static	$\geq 5 \times \mathrm{D}$			
Bending radius, dynamic	$\geq 10 \times \mathrm{D}$			
Bending cycles	>10 million			
Max. perm. travel speed	$3.3 \mathrm{~m} / \mathrm{s}$ - at 5 m travel distance (typ.) to $5 \mathrm{~m} / \mathrm{s}$ - at 0.9 m travel distance			
Max. perm. acceleration	$\leq 30 \mathrm{~m} / \mathrm{s}^{2}$			
Ambient temperature, fixed lay	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{C}\right.$ max. 10000 h$)$			
Ambient temperature, flexible lay	$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{C}\right.$ max. 10000 h$)$			
Protection class	IP67 (plugged in \& screwed down)			
Certifications and approvals				

Combination examples

Mounting

General notes

The Omega modules are mounted using various fastening elements:

- Clamping fixtures
- Sliding blocks
- Square nuts
- Screws for T-slots as per DIN 787 (not shown).
- Centering rings on carriage as positioning aids
Length dependent on base.

Mounting by the carriage (frame moves)

OBB	$\begin{array}{r} \mathbf{A} \\ (\mathrm{mm}) \end{array}$	$\begin{array}{r} \text { B } \\ (\mathrm{mm}) \end{array}$	$\begin{array}{r} \mathbf{C} \\ (\mathrm{mm}) \end{array}$	$\begin{array}{r} \mathrm{D} \\ (\mathrm{~mm}) \end{array}$
55	91	105	40	50
85	130	148	40	80
120	157	175	80	100

Mounting by the frame (HK) (carriage moves)
\triangle Do not fix the Omega module at the end plates! The frame is the main load-bearing part!

OBB	A (mm)	B (mm)	C (mm)
55	71	85	25
85	101	115	40
120	144	162	80

Mounting by the frame
(carriage moves)
Fastening with clamping fixtures
Fastening with sliding blocks

Mounting

Clamping fixtures

Recommended number of clamping fixtures for the installation case carriage moves (frame fixed):

- 3 pieces on side opposite motor
- 2 pieces on motor side

Recommended number of clamping fixtures for the installation case frame moves (carriage fixed):

- 4 pieces per side/m

Size	Mounting on...	Countersink	Number	Dimensions (mm)							Material number
		for	N	A	B	C	D	E	F	H	
OBB-055	Carriage	M6	2	65	12.5	40	17.0	10.2	21.0	7	R1175 19204
	Frame	M6	2	72	11.0	50	11.5	5.3	19.3	7	R0375 51033
OBB-085	Carriage	M8	2	68	15.0	38	27.5	18.0	30.0	9	R0375 41052
	Frame	M6	2	78	14.0	50	20.0	11.3	21.0	7	R1175 39030
OBB-120	Carriage	M8	2	88	19.0	50	27.5	18.0	30.0	9	R0375 41050
	Frame	M8	2	108	19.0	70	27.5	16.3	29.0	9	R1175 29026

Centering rings

The centering ring serves as a positioning aid and for positive locking when mounting customer attachments to the carriage. It creates a positive-locking connection with good reproducibility.
Material: Steel (stainless)

a) Customer attachment
b) Centering ring
c) Carriage

	OBB	Size	Dimensio	(mm)							Material number
		0 (mm)	$\begin{array}{r} \text { ØA } \\ \text { H7/k6 } \end{array}$	$\begin{array}{r} \text { ØB } \\ \text { H7/k6 } \end{array}$	$\begin{array}{r} C \\ \pm 0.1 \end{array}$	$\begin{array}{r} D \\ -0.2 \end{array}$	$\begin{array}{r} E \\ +0.2 \end{array}$	ØF	$\begin{array}{r} \mathrm{H}_{1} \\ +0.2 \end{array}$	$\begin{array}{r} \mathrm{H}_{2} \\ +0.2 \end{array}$	
Carriage	055	12	12	-	9.0	4.0	-	2.0	-	2.1	R0396 60545
		12-7	12	7	5.5	3.5	1.5	1.6	1.6	2.1	R0396 60577
		12-9	12	9	6.6	4.0	2.0	2.0	2.1	2.1	R0396 60550
	085,	16	16	-	11.0	6.0	-	3.0	-	3.1	R0396 60546
	120	16-12	16	12	9.0	5.0	2.0	2.0	2.1	3.1	R0396 60551
End plate	055,	9	9	-	6.6	4.0	-	2.0	-	2.1	R0396 60544
	085	9-5	9	5	3.4	3.5	1.5	1.6	1.6	2.1	R0396 60548
		9-7	9	7	5.5	3.5	1.5	1.6	1.6	2.1	R0396 60549
	120	12	12	-	9.0	4.0	-	2.0	-	2.1	R0396 60545
		12-7	12	7	5.5	3.5	1.5	1.6	1.6	2.1	R0396 60577
		12-9	12	9	6.6	4.0	2.0	2.0	2.1	2.1	R0396 60550

Sliding blocks and springs

The spring serves as a mounting and positioning aid.
(only for OBB-085 and OBB-120)

Overview of sliding blocks

Sliding blocks for lateral mounting on frame

Size	\mathbf{A}	\mathbf{E}	\mathbf{G}
(mm)	(mm)	(mm)	
OBB-055	5	10	12
OBB-085	6	12	14
OBB-120	8	16	18

Dimensions (mm)						for thread	Material number Sliding block	Material number Spring
A	B	C	D	E	F_{1}			
5	9.2	4.0	1.7	10	-	M4	R0391 71038	-
6	11.5	4.0	1.0	12	-	M4	R3447 01401	R3412 01002
				12	-	M5	R3447 01501	R3412 01002
				45	30	M5	R0391 71009	-
8	16.0	6.0	2.0	16	-	M4	R3447 01701	R3412 01102
				16	-	M5	R3447 01801	R3412 01102
				16	-	M6	R3447019 01	R3412 01102
				16	-	M8	R3447 02001	R3412 01102
				50	36	M6	R0391 71008	-
10	19.5	10.5	5.0	20	-	M4	R3447 01201	R3412 00902
				20	-	M5	R3447 01101	R3412 00902
				20	-	M6	R3447 01001	R3412 00902
				20	-	M8	R3447 00901	R3412 00902
				90	70	M8	R0391 71007	-

Carriage with clamping element

Carriage

For carriages with integrated clamping element there is a standard air port (1) at each end face of the carriage opposite the lube nipples. Connection on an air port is sufficient.

Clamping element (LKPS)

The clamping element is only used for clamping (static holding) linear axes

It is closed in deenergized state due to the spring energy accumulator (NC).

The clamping element can be used as a tried-and-tested part in conjunction with a suitable function test and in category 1 control units in accordance with DIN EN ISO 13849-1:2006.

If the risk assessment of the user specifies a Performance Level (s. Appendix A, DIN EN ISO 13849-1:2006) that requires a higher category, additional measures are required in the control technology to ensure that the start-up from the rest position is upheld or prevented safely.

For further instructions and information, please refer to documentation belonging to this product.
\triangle The clamping element may only be used when the axis is at a standstill!
The clamping element may not be used as a braking unit!
Use for emergency braking of a moving mass is not permitted!
Clamping actions while the mass is moving may result in the clamping element and the linear guide being destroyed!

Air pressure: 0 bar

Clamping by spring force

When the pressure drops, the clamping profiles are pressed against the guide rail by means of a spring energy accumulator. A quick venting valve is required for fast response.

Air pressure: 5.5-8 bar
Release by air pressure
The clamping profiles are held apart by compressed air.

- Allows free movement

Size	OBB-055	OBB-085	OBB-120
Holding force ${ }^{1)}$	400 N	750 N	1300 N
Pressure min. (release pressure)	5.5 bar		
Pressure max.	8.0 bar		
Spring energy accumulator	\checkmark		
Clamping cycles	up to 5 mill. (B10d value) ${ }^{2)}$		
Braking cycles	not permitted		
Connector connection for tubing	$\varnothing 4 \mathrm{~mm}$		
Actuation	pneumatic		
theor. air consumption per cycle at 6 bar	$23 \mathrm{~cm}^{3}$	$54 \mathrm{~cm}^{3}$	$74 \mathrm{~cm}^{3}$
Air quality	lubricated air in accordance with ISO 8573-1 class 4 filter mesh size $25 \mu \mathrm{~m}$		
1) Static holding of the Omega module carriage or frame with axial forces up to the relevant specified value.			
2) The B10d-value specifies the number of failed dangerously.	switching cycle	10% of th	onents

Attachment of additional devices

End plate for attachment

The end plates of the Omega modules feature mounting holes, threads and locating holes for attachment of additional devices.

Further information on possible combinations with the Omega module OBB is available in the catalog "Connection technology for linear motion systems".

Shock absorber

Suitable shock absorbers are available for end position cushioning of the Omega module.
The shock absorber serves to avoid damage in the event of uncontrolled movements. It is not suitable for continuous operation.

Notes

Follow the mounting instructions.

Shortened stroke

\triangle The maximum travel distance is shortened if a shock absorber is installed.

Note:

When a shock absorber is used, the maximum travel distance is reduced due to the construction $\left(\mathrm{s}_{\max }\right)$. For the calculation, the maximum travel distance must therefore be reduced by the value $\mathrm{s}_{\text {red }}$ per side or per shock absorber. If the carriage is at the end of the maximum travel distance, the front face of the carriage is on the damper head.

Mounting bracket

Size	Material number ${ }^{1}{ }^{\text {(}}$	Dimensions (mm)									
		A	B	H	H_{1}	$\mathrm{Ls}^{2)}$	L_{s}	$\mathrm{L}_{\text {S1 }}$	Stroke	\varnothing D	G
OBB-055	R1175 10117	70	56.5	113	90.5	133	133	189	50	M33 $\times 1.5$	12
OBB-085	R1175 30117	104	68.0	150	125.0	149	149	209	50	M33 $\times 1.5$	14
OBB-120	R1175 60117	145	99.0	210	210.0	206	205	246	75	M45 x 1.5	16

1) Scope of delivery: holding ring, shock absorber and mounting material
2) Carriage with clamping element

Shock absorber

Size	Max. mass to be braked	Energy absorption	$\mathrm{S}_{\text {red }}{ }^{1)}$	Weight (Mounting bracket and shock absorber)
	(kg)	($\mathrm{Nm} /$ stroke)	(mm)	(kg)
OBB-055	20	620	62	0.95
OBB-085	43	1125	85	1.62
OBB-120	90	2040	121	4.00

[^1]
IndraDyn S servo motors MSK

Schematic motor illustration

Motor	Dimensions (mm)													
	A	B_{1}	C	C_{1}	$\begin{array}{r} \varnothing D \\ \text { k6 } \end{array}$	$\begin{array}{r} \text { өE } \\ \text { j6 } \end{array}$	ØF	$\varnothing \mathrm{G}$	H	H_{1}	H_{2}	without holding brake		R
MSK 040C-0600	82	8.0	30	2.5	14	50	95	6.6	124.5	83.5	69.0	185.5	215.5	R8
MSK 050C-0600	98	9.0	40	3.0	19	95	115	9.0	134.5	85.5	71.0	203.0	233.0	R8
MSK 076C-0450	140	14.0	50	4.0	24	110	165	11.0	180.0	110.0	95.6	292.5	292.5	R12

Motor data

Motor	$\begin{array}{r} \mathrm{n}_{\text {max }} \\ \left(\min ^{-1}\right) \end{array}$	$\begin{array}{r} \mathrm{M}_{0} \\ (\mathrm{Nm}) \end{array}$	$\begin{aligned} & M_{\max } \\ & (\mathrm{Nm}) \end{aligned}$	$\begin{array}{r} \mathbf{M}_{\mathrm{br}} \\ (\mathrm{Nm}) \end{array}$	$\begin{array}{r} J_{m} \\ \left(\mathrm{kgm}^{2}\right) \end{array}$	$\begin{array}{r} \mathrm{J}_{\mathrm{br}} \\ \left(\mathrm{kgm}^{2}\right) \end{array}$	$\begin{gathered} \mathrm{m}_{\mathrm{m}} \\ (\mathrm{~kg}) \end{gathered}$	m_{br} (kg)
MSK 040C-0600	7500	2.7	8.1	4	0.000140	0.000023	3.6	0.3
MSK 050C-0600	6000	5.0	15.0	5	0.000330	0.000107	5.4	0.7
MSK 076C-0450	5000	12.0	43.5	11	0.004300	0.000360	13.8	1.1

Motor data independent of the Omega module

J_{br}	$=$ mass moment of inertia of holding brake
J_{m}	$=$ mass moment of inertia of the motor
L_{m}	$=$ length of the motor
M_{0}	$=$ torque at standstill
M_{br}	$=$ holding torque of holding brake when switched off

[^2]| Option number ${ }^{1)}$ | Motor | Material number | Version
 Holding brake | | Type designation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 86 | MSK040C-0600 | R911306060 | X | | MSK040C-0600-NN-M1-UG0-NNNN |
| 87 | | R911306061 | | X | MSK040C-0600-NN-M1-UG1-NNNN |
| 88 | MSK050C-0600 | R911298354 | X | | MSK050C-0600-NN-M1-UG0-NNNN |
| 89 | | R911298355 | | X | MSK050C-0600-NN-M1-UG1-NNNN |
| 92 | MSK076C-0450 | R911318098 | X | | MSK076C-0450-NN-M1-UG0-NNNN |
| 93 | | R911315713 | | X | MSK076C-0450-NN-M1-UG1-NNNN |

1) From "Configuration and ordering" table

Version

- Plain shaft with shaft seal
- Multi-turn absolute encoder M1 (Hiperface)
- Cooling system: natural convection
- Protection class IP65 (housing)
- With or without holding brake

Recommended motor/controller combination

Torque/speed characteristic

 (schematic)
Notes

The motors can be supplied complete with controllers and control units. For further motor types and more information on motors, controllers and control units, please refer to the following Rexroth catalogs on drive technology:

- Drive System Rexroth IndraDrive, R999000018
- Automation systems and control components, R999000026
- Rexroth IndraDyn S Synchronous Motors MSK, R911296288

Motor	Controller
MSK 040C-0600	HCS 01.1E-W0008
MSK 040C-0600	HCS 01.1E-W0018
MSK 050C-0600	HCS 01.1E-W0028
MSK 076C-0450	HCS 01.1E-W0054

IndraDyn S servo motors MSM

Schematic motor illustration

Motor	Dimensions (mm)										
	A	B_{1}	C	C_{1}	$\begin{array}{r} \varnothing D \\ \text { k6 } \end{array}$	$\begin{array}{r} \text { ØE } \\ \text { j6 } \end{array}$	ØF	ØG	H	L_{m} Without holding brake	With holding brake
MSM 031C-0300	60	6.5	30	3	14	50	70	4.5	73	98.5	135.0
MSM 041B-0300	80	6.0	35	3	19	70	90	6.0	93	112.0	149.0

Motor data

Motor	$\begin{array}{r} \mathrm{n}_{\text {max }} \\ \left(\min ^{-1}\right) \end{array}$	$\begin{array}{r} \mathbf{M}_{\mathbf{0}} \\ (\mathrm{Nm}) \end{array}$	$\begin{aligned} & \mathbf{M}_{\max } \\ & (\mathrm{Nm}) \end{aligned}$	$\begin{gathered} \mathbf{M}_{\mathrm{br}} \\ (\mathrm{Nm}) \end{gathered}$	$\begin{array}{r} J_{m} \\ \left(\mathrm{kgm}^{2}\right) \end{array}$	$\begin{array}{r} J_{\mathrm{br}} \\ \left(\mathrm{kgm}^{2}\right) \end{array}$	$\begin{aligned} & \mathrm{m}_{\mathrm{m}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & m_{b r} \\ & (\mathrm{~kg}) \end{aligned}$
MSM 031C-0300	5000	1.30	3.80	1.27	0.0000260	0.0000018	1.20	0.50
MSM 041B-0300	4500	2.40	7.10	2.45	0.0000870	0.0000075	2.30	0.80

$\mathrm{J}_{\mathrm{br}} \quad=$ mass moment of inertia of holding brake
$\mathrm{J}_{\mathrm{m}}=$ mass moment of inertia of the motor
$L_{m}=$ length of the motor
$\mathrm{M}_{0}=$ torque at standstill
$\mathrm{M}_{\mathrm{br}}=$ holding torque of the holding brake (normally closed)
$M_{\max }=$ maximum possible motor torque
$\mathrm{m}_{\mathrm{m}}=$ mass of motor
$\mathrm{m}_{\mathrm{br}}=$ mass of holding brake
$\mathrm{n}_{\max }=$ maximum speed

Option number ${ }^{1)}$	Motor	Material number	Version Holding brake		Type designation
138	MSM 031C-0300	R911344215	X		MSM 031C-0300-NN-M5-MH0
139		R911344216		X	MSM 031C-0300-NN-M5-MH1
140	MSM 041B-0300	R911344217	X		MSM 041B-0300-NN-M5-MH0
141		R911344218		X	MSM 041B-0300-NN-M5-MH1

1) From "Configuration and ordering" table

Version:

- Plain shaft without shaft seal
- Mutiturn absolute encoder M5 (20 bit, absolute encoder function only available with buffer battery)
- Cooling system: natural convection
- Protection class IP54 (shaft IP40)
- With or without holding brake
- Metal round connector M17

Recommended motor/controller combination

Torque/speed characteristic (schematic)

Notes

The motors can be supplied complete with controllers and control units. For further motor types and more information on motors, controllers and control units, please refer to the following Rexroth catalogs:

- Drive System Rexroth IndraDrive, R999000018
- Automation systems and control components, R999000026
- Rexroth IndraDyn S Synchronous Motors MSM R911329337

Motor	Controller
MSM 031C-0300	HCS 01.1E-W0009
MSM 041B-0300	HCS 01.1E-W0013

The perfect system solution for every application

Efficient production processes are the key to your success in the marketplace. Today's environment, defined by rapid change and short product cycles, demands flexible systems with an optimal design and configuration. EasyHandling gives you the tools you need to automate your handling applications with greater ease, speed, and efficiency. EasyHandling is more than just a modular collection of mechanical components; it takes an evolutionary step forward by providing an all-inclusive system solution - our best solution for your requirements.

EasyHandling -
 Easier. Faster. More Economical.

Engineering - up to 70\% faster

EasyHandling tools help users right from the component selection stage, proposing solutions with all the necessary information on parts lists, technical data and CAD drawings.

Installation - saves up to 60\% on time

Thanks to positive-locking interfaces, the mechanical components are perfectly aligned and accurately connected right away.

Start-up - reduces your effort by up to 90\%

With the smart start-up assistant EasyWizard, parameterization and configuration become child's play. Your handling system will be ready to go in just a few clicks.

Production - more economical and more efficient
Rexroth enhances the system effectiveness still further with smart application tools: The drive controller software outputs maintenance-related messages to the user based on operating hours and travel to help schedule servicing at the right intervals. The result: longer life and reduced risk of failure.

Future developments - continuous improvement Prepare for future market developments now: One of the great features of EasyHandling systems is their systematic openness. The flexibility of the mechanical and electrical components allows you to adapt quickly and efficiently to new production requirements.

EasyHandling -
more than just a kit of components

The modular system concept that ideally builds on itself

basic - Made-to-measure mechanics

EasyHandling basic contains all the mechatronic components you need to build complete, single- or multi-axis systems to match your individual needs. All of the component interfaces are systematically standardized, making it possible to combine them at will. Practical tools and aids make selection and configuration even easier.

comfort - Getting started even faster

EasyHandling comfort expands the Basic component range by adding powerful servo drives with multiple protocol capability. The universal, smart control units are ideally suited for a variety of handling tasks. Unique: with the EasyWizard start-up assistant, linear systems are ready to use after entering just a few product-specific parameters.
advanced -

Controls for demanding requirements

 With the freely scalable, high-performing motion logic control system, EasyHandling advanced makes configuration and handling even easier. Predefined functions covering more than 90 percent of all handling applications eliminate the need for lengthy programming.

For more information about EasyHandling, see the brochure "EasyHandling - more than just a kit of components" R999000044.

Service and information

Operating conditions

Normal operating conditions

Design notes

Required and supplementary documentation
\triangle Moved parts:
Safety devices and guards necessary
\triangle For vertical installations:
Arresting devices necessary to protect against falling loads

Ambient temperature		
No passing below the dew point	$0^{\circ} \mathrm{C} \ldots 40^{\circ} \mathrm{C}$	
Load	$\leq 0.2 \mathrm{C}$	
	OBB-055 $\geq 110 \mathrm{~mm}$	
Contamination	OBB-120 $\geq 135 \mathrm{~mm}$	

1) Minimum travel distance to ensure a reliable lubrication distribution.

For further instructions and information, please refer to documentation belonging to this product. "Safety Instructions for Linear Motion Systems"

- You can find PDF files of these documents in the Internet at www.boschrexroth.com/mediadirectory

We would also be pleased to send you the documents.
If you are unsure about using this product, please contact Bosch Rexroth.

Lubrication

Lubrication notes

Omega modules receive basic lubrication with Dynalub 510 and are only designed for grease lubrication using a manual grease gun.
The only maintenance required is relubrication of the integrated Ball Rail System via one of the two funnel-type lube nipples (1).

Lubrication point

1 Funnel-type lube nipple DIN 3405 Type D1

Lubricants

For lubricant quantities and intervals, see "Instructions for Omega Modules".

Size	Grease	Material number
OBB-055	Dynalub 510	R3416 037 00
OBB-085	(Bosch Rexroth)	(Cartridge 400 g)
OBB-120	NLGI grade 2 lithium-based high-perfor-	
	mance grease as per DIN 51818 (KP2K-20 as per DIN 51825) Alternative greases Elkalub GLS 135 / N2 (Chemie-Technik) Castrol Longtime PD2 (Castrol) 	

\triangle Do not use greases containing solid particles (e.g. graphite or MoS_{2})!
\triangle For lubrication in short-stroke applications (travel path $<s_{\text {min }}$), please consult us.

Documentation

Standard report

Option 01

The standard report serves to confirm that the checks listed in the report have been carried out and that the measured values lie within the permissible tolerances.

Controls listed in the standard report:

- functional checks of mechanical components
- functional checks of electrical components
- design is in accordance with order confirmation

Service and information

Parameterization (commissioning)

Besides reference information for the production of the linear motion system, there are also technical parameters specified for commissioning on the nameplate.

For Omega modules, the nameplate is mounted on the carriage on the drive side. (See fig.)

Further information

Bosch Rexroth homepage:

http://www.boschrexroth.com

Omega module product information:
http://www.boschrexroth.com/en/xc/products/product-groups/ linear-motion-technology/linear-motion-systems/omega-module/index

Service and information

Ordering example OBB-085

Configuration and ordering

$=$ Mark of the selection area to the decision about version
\square
= Selected option that is to be entered at "Inquiry/Order" in the the order form at the end of the catalog

Ordering data	Option	Description
Omega module		
Short product name, length	OBB-085-NN-1,910 mm	Length 910 mm
Version	MG01	Omega module with angular planetary gearbox, mounted as shown in fig. MG01
Guideway	01	Ball Rail System
Drive	10	Toothed belt drive
Carriage	01	Carriage with length $\mathrm{L}_{\text {ca }}=260 \mathrm{~mm}$ (without clamping element)
Motor attachment	33	with angular planetary gearbox, i $=5$, for motor MSK 050C
Motor	89	Motor MSK 050C with brake
1. Switch	61	PNP NC (frame moves)
2. Switch	65	Mechanical switch (frame moves)
Socket-plug	17	Socket-plug on the switch side (frame moves)
Control strip	42	Two control strips on the frame (frame moves)
Documentation	01	Standard report

Inquiry/order form

Find your local contact person here:
www.boschrexroth.com/adressen

Quantity
Order of: \qquad pcs, \qquad per month, \qquad per year, per order, or \qquad
Comments:

Sender

Company:
Address:

Name:
Department:
Telephone:
Telefax:

```
Bosch Rexroth AG
Ernst-Sachs-Straße 100
97424 Schweinfurt, Germany
Tel. +499721 937-0
Fax +499721 937-275
www.boschrexroth.com
```

Find your local contact person here: www.boschrexroth.com/contact

[^0]: \triangle When considering the complete drive train (mechanical system + motor/controller), the maximum torque of the motor can lie below the maximum value for the mechanical system ($\mathrm{M}_{\text {mech }}$) and thus limit the maximum permissible drive torque of the overall drive train.
 If the maximum torque of the motor lies above the upper limit for the mechanical system ($M_{\text {mech }}$), the maximum motor torque must be limited to the permitted value for the mechanical system.

[^1]: 1) Reduction of the maximum travel distance of the Omega module (minimum value per side or damper)
[^2]: $\mathrm{M}_{\max }=$ maximum possible motor torque
 $\mathrm{m}_{\mathrm{m}}=$ mass of motor
 $\mathrm{m}_{\mathrm{br}}=$ mass of the holding brake
 $\mathrm{n}_{\text {max }}=$ maximum speed

